MATH/CMSC 456 :: UPDATED COURSE INFO

Instructor: Gorjan Alagic (<u>galagic@umd.edu</u>) Guest instructor: Carl Miller (<u>camiller@umd.edu</u>), ATL 3100K Textbook: Introduction to Modern Cryptography, Katz and Lindell;

Webpage: alagic.org/cmsc-456-cryptography-spring-2020/

Piazza: piazza.com/umd/spring2020/cmsc456

ELMS: active, slides and reading posted there.

Gradescope: active, access through ELMS.

TAs (Our spot: shared open area across from AVW 4166)

- Elijah Grubb (egrubb@cs.umd.edu) 11am-12pm TuTh (AVW);
- Justin Hontz (jhontz@terpmail.umd.edu) 1pm-2pm MW (AVW);

Additional help:

- Chen Bai (cbai1@terpmail.umd.edu) 3:30-5:30pm Tu (2115 ATL inside JQI)
- Bibhusa Rawal (bibhusa@terpmail.umd.edu) 3:30-5:30pm Th (2115 ATL inside JQI)

Current readings:

Mar 3: 359-372, 375-382, 387-399

Mar 5: pp. 399-432 (skip subsections 11.4.3 and 11.5.5)

RECAP: EFFICIENT OPERATIONS MOD q

 \mathbb{Z}_q = the set of remainders mod q.

	Efficient to compute?	Efficient to <u>invert</u> ?
Addition	YES	YES
Multiplication	YES	YES
Exponentiation	YES	?

We found that exponentiation is efficient to invert if q is prime. If q is not prime, it may be very difficult.

RECAP: A TOY VERSION OF RSA ENCRYPTION

1. Alice generates random q = rs (r,s = primes) and random $x \in \{1, 2, ..., \phi(q) - 1\}$.

- 2. She computes $y = x^{-1} \mod \phi(q)$. (If it doesn't exist, restart.)
- 3. Bob transmits ciphertext $c = [m^x \mod q]$.
- 4. Alice computes "plaintext" $c^y = m^{xy} = m^1 \mod q$.

Idea: There is no obvious way for the Adv. to compute y.

 $\phi(q) = #$ of elements $a \in \mathbb{Z}_q$ such that gcd(a,q) = 1.

PLAN FOR THIS WEEK

- 1. Diffie-Hellman key-exchange.
- 2. Formal models of public-key encryption.
- 3. RSA encryption revisited.
- 4. The impact of Shor's algorithm on cryptography.

DIFFIE-HELLMAN KEY EXCHANGE

SOME REMARKS ON MOTIVATION

With RSA, we used multiplication in \mathbb{Z}_q to build a cryptosystem. Why can't we just use a different algebraic structure instead?

```
"abstraction:"
```

```
Merriam-Webster definition:
```

"the art or process of abstracting"

Well, that was helpful. Trying again:

"abstract:"

"expressing a quality apart from an object."

Today we'll define a large class of algebraic structures (groups). We'll use them to define a cryptosystem (Diffie-Hellman) which is related to, but different from, RSA.

GROUPS

A group **G** is a set with a binary operation (" \cdot ") which has "multiplication-like" properties. Specifically, it has:

- Associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- Identity: There exists e such that $a \cdot e = a$ for all a.
- Inverses: For every a, there exists b such that $a \cdot b = e$.

Examples:

- The real numbers (under addition).
- The set \mathbb{Z}_q (under addition).
- Is \mathbb{Z}_q under multiplication a group?

No - but the set of all elements of that have multiplicative inverses (\mathbb{Z}_q^*), is!

CYCLIC GROUPS

We'll write ab for $(a \cdot b)$, and a^n for $a \cdot a \cdot \cdots \cdot a$ (n times).

An group G is a **cyclic group** if there is a single a such that all elements in G can be expressed as a^i for some i.

Example: We know (from last week) that the set \mathbb{Z}_{11}^* is cyclic (a = 2).

Exercise: Find some q such that \mathbb{Z}_q^* is <u>not</u> cyclic.

In this paradigm, Alice and Bob are merely trying to generate a shared random key through public communication.

DIFFIE-HELLMAN KEY EXCHANGE

Let G be a cyclic group, of size t, with generator g. (Public.) Alice chooses random $x \in \{1, 2, ..., t\}$ and sends g^x to Bob. Bob chooses random $y \in \{1, 2, ..., t\}$ and sends g^y to Alice. Alice computes $(g^y)^x = g^{xy}$. Bob computes $(g^x)^y = g^{xy}$. They now have a shared secret!

Exercise: Compute these values for $G = \mathbb{Z}_{11}^*$, g=2,x=3,y=4.

DIFFIE-HELLMAN KEY EXCHANGE

When is this protocol secure?

Better question: What would we have to <u>assume</u> in order to make this secure?

THE DECISIONAL DIFFIE-HELLMAN PROBLEM

THE DECISIONAL DIFFIE-HELLMAN PROBLEM

Let G be an oracle that, on input 1^n , generates a cyclic group (G,g). (t := size of G.)

Experiment:

- 1. Draw random $b \leftarrow \{0,1\}$ and $x, y, z \leftarrow \{1, \dots, t\}$.
- 2. If b = 0, give g^x , g^y , g^{xy} to A (adversary);
- 3. If b = 1, give g^x , g^y , g^z to A;
- 4. *A* returns $b' \in \{0,1\}$.

Definition. The DDH problem is hard relative to G if, for any PPT A, $|\Pr[A = 1|b = 0] - \Pr[A = 1|b = 1]| \le \operatorname{negl}(n).$

DIFFIE-HELLMAN KEY EXCHANGE

Chapter 10 proves that if the DDH problem is hard, then the Diffie-Hellman Key Exchange protocol is secure (short proof).

Although the only group we've really worked with so far is \mathbb{Z}_q^* , DH can be done with other groups (such as elliptic curves, subsection 8.3.4).

FORMAL MODELS OF PUBLIC-KEY ENCRYPTION

PHILOSOPHY

We want to show that our cryptosystems are secure in a wide range of scenarios.

Therefore, we set up an "experiment," giving the adversary a lot of power in attempting to break the cryptosystem, and ask whether it is still secure.

The adversary always has:

- Polynomial-time computation ability.
- Full knowledge of protocol design.
- Access to all public information.

In some circumstances, we give the adversary even more freedom.

RECALL: "IND" SECURITY FOR SECRET KEY ENCRYPTION

Say our secret-key protocol is (KeyGen, Enc, Dec).

Indistinguishability experiment (IND).

- 1. Sample $k \leftarrow \text{KeyGen}$ and $b \leftarrow \{0,1\}$;
- 2. A outputs two equal-length messages m_0, m_1 ;
- 3. Give **A** the ciphertext $c \leftarrow \mathbf{Enc}_k(m_b)$;
- 4. A outputs a bit b'.

We say A wins if b = b'.

Definition. Our scheme has **indistinguishable ciphertexts** if, for every PPT adversary *A*,

$$\Pr[A \text{ wins}] \le \frac{1}{2} + \operatorname{negl}(n).$$

RECALL: IND-CPA SECURITY FOR SECRET KEY ENCRYPTION

We give A access to \mathbf{Enc}_k (as an oracle).

Indistinguishability experiment (IND).

- 1. Sample $k \leftarrow \text{KeyGen}$ and $b \leftarrow \{0,1\}$;
- 2. A outputs two equal-length messages m_0, m_1 ;
- 3. Give **A** the ciphertext $c \leftarrow \mathbf{Enc}_k(m_b)$;
- 4. A outputs a bit b'.

We say A wins if b = b'.

Definition. Our scheme is **IND-CPA secure** if, for every PPT adversary A, $Pr[A \text{ wins}] \leq \frac{1}{2} + negl(n).$

IND-CPA SECURITY FOR PUBLIC KEY ENCRYPTION

We give A the public key.

PHILOSOPHY (CONTINUED)

The nuances of the experiment matter.

Sometimes different experiments turn out to be equivalent. Sometimes, not.

CPA = "chosen plaintext attack" CCA = "chosen ciphertext attack"

IND-CCA SECURITY FOR PUBLIC KEY ENCRYPTION

A has access to a <u>de</u>cryption oracle.

- 1. Sample $pk, sk \leftarrow \text{KeyGen}$ and $b \leftarrow \{0,1\}$;
- 2. Give pk to A, who returns equal-length messages m_0, m_1 ;
- 3. Give **A** the ciphertext $c \leftarrow \mathbf{Enc}_k(m_b)$;
- 4. A outputs a bit b'.

(A is not allowed to decrypt c.)

Definition. Our scheme is **IND-CCA secure** if, for every PPT adversary A, $Pr[A \text{ wins}] \le \frac{1}{2} + negl(n).$

Goal: Through public dialogue, share a bit string *k* that is uniformly random from the perspective of the adversary.

Gen	input = 1 ⁿ	output = keypair (<i>pk</i> , <i>sk</i>)
Encaps	<i>input</i> = 1^n and pk	output = key (k) and ciphertext (c)
Decaps	<i>input</i> = sk and c	output = key(k)

NEW TASK: KEY ENCAPSULATION

KEM = "key encapsulation mechanism"

One can do KEM \rightarrow secret-key encryption. The effect is similar to public-key encryption, and can be more efficient.

CPA SECURITY FOR KEMs

- 1. Carry out the KEM to obtain *pk*, *sk*, *c*, *k*;
- 2. Draw random $b \leftarrow \{0,1\}$;
- 3. If b = 0, give k, c, pk to A;
- 4. If b = 1, generate a uniformly random bit string u (same length) and give u, c, pk to A;
- **5. A** returns *b*'.

We say that A "wins" if b = b'.

Definition. The scheme is **CPA secure** if, for every PPT adversary *A*, $Pr[A \text{ wins}] \leq \frac{1}{2} + negl(n).$

SUMMING UP

- We "abstracted" the underlying hardness of RSA encryption, and defined the concept of a "group."
- We defined Diffie-Hellman key exchange (a general framework).
- We stated various formal definitions of security for public-key encryption.

Coming up: A deeper look at RSA.