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Instructor: Gorjan Alagic (galagic@umd.edu); ATL 3102, office hours: by appointment
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HOMEWORK RULES AND GUIDELINES : 

First homework is up (due midnight tonight.)

Rules

• collaboration ok, solutions must be written up by yourself, in your own words;

• late homeworks will not be accepted (no exceptions, but lowest grade will be dropped.)

Explanations and proofs

• correct answers with no explanation will get a zero score;

• explain your ideas clearly and completely;

• write in complete sentences, use correct and complete mathematical notation (as in lectures and book);

• proofs need to be rigorous, clear, and complete (consider all cases, prove counterexamples, etc.)

Suggestions

• work on your own at least some of the time for each assignment

• work in 25+ minute chunks of uninterrupted, distraction-free, device-free time

• develop intuition: try lots of examples, ask yourself questions, “play” with the concepts



RECAP: IS CRYPTO JUST SECRECY?

Secrecy: protects against Eve learning our message.

What else could go wrong?

Eve could interfere!

Is this possible? The message is encrypted!

Consider OTP:

• Eve observes a ciphertext 𝑐 = 𝐄𝐧𝐜𝑘 𝑚 = 𝑚⊕ 𝑘;

• She flips some bits: 𝑐 ↦ 𝑐 ⊕ 𝑠;

• Bob decrypts: 𝐃𝒆𝐜𝑘 𝑐 ⊕ 𝑠 = 𝑐 ⊕ 𝑠 ⊕ 𝑘 = 𝑠 ⊕ 𝑐 ⊕ 𝑘 = 𝑠 ⊕𝑚.

• Eve’s attack was directly applied to the message!

If 𝑚 was a bank deposit, Eve could flip the bits that add thousands (or millions) to the amount!

Alice Bob
Eve



RECAP: WHAT ABOUT FANCIER ENCRYPTION?

What about PRG and PRF encryption?

Both based on OTP!

So same attacks work!

For example, interference against PRF scheme:

• Eve observes a ciphertext 𝑟, 𝑐 ≔ 𝐄𝐧𝐜𝑘 𝑚 = (𝑟,𝑚 ⊕ 𝑭k 𝑟 );

• She flips some bits: 𝑟, 𝑐 ↦ (𝑟, 𝑐 ⊕ 𝑠);

• Bob decrypts: 𝐃𝐞𝐜𝑘 𝑟, 𝑐 ⊕ 𝑠 = 𝑐 ⊕ 𝑠 ⊕ 𝑭𝑘 𝑟 = 𝑠 ⊕𝑚.

• Eve’s attack was directly applied to the message!

All the extra secrecy protection of the PRF scheme did not help at all!

Alice Bob
Eve



V. AUTHENTICATION

Reading: (p.107-126, 142-145)



RECAP: AUTHENTICATION

We now change tasks:

• forget secrecy for the moment!

• and instead consider authenticity.

• (we will talk about combining them later.)

The task:

• Alice wants to send a message to Bob;

• Bob’s goal: make sure message is really from Alice…

• … and nobody else!

Assumptions:

• Alice and Bob can share a secret in advance (and have private spaces);

• Alice can send only one transmission (for now);

• Eve can change (or replace) the transmission however she likes!

• (… but we don’t care if she can learn the message.)

Alice Bob
Eve



RECAP: MESSAGE AUTHENTICATION CODES

Message authentication code (MAC):

• generate key: 𝑘 ← 𝐊𝐞𝐲𝐆𝐞𝐧

• generate tag: 𝑡 ← 𝐌𝐚𝐜𝑘 𝑚

• verify (message, tag) pair: 𝑏 ← 𝐕𝐞𝐫𝑘 𝑚, 𝑡 [ 𝑏 = 1 (valid) or 𝑏 = 0 (invalid) ]

Correctness:

𝐕𝐞𝐫𝑘 𝑚,𝐌𝐚𝐜𝑘 𝑚 = 1.

Alice Bob
Eve

𝑘 ← 𝐊𝐞𝐲𝐆𝐞𝐧

𝑘 𝑘

Pick message 𝑚.
Set 𝑡 = 𝐌𝐚𝐜𝑘 𝑚

(𝑚, 𝑡)
Compute 𝑏 = 𝐕𝐞𝐫𝑘 𝑚, 𝑡
𝑏 = 1 : YES message was from Alice!
𝑏 = 0 : NO it was tampered with!



RECAP: UNFORGEABILITY

How to define security for MACs? Unforgeability.

Let’s use a game: MacForge Π, 𝑛 , where Π is a MAC and 𝑛 the security parameter.

1. A key is sampled: 𝑘 ← 𝐊𝐞𝐲𝐆𝐞𝐧(1n) ;

2. Adversary 𝑨 is given oracle access to 𝐌𝐚𝐜𝑘;

3. 𝑨 outputs a pair (𝑚, 𝑡); set 𝑏 = 𝐕𝐞𝐫𝑘 𝑚, 𝑡 ;

We say 𝑨 wins the experiment if:

• 𝑏 = 1 (valid),  and

• 𝑚 is not in the set of queries 𝑨 made to the oracle.

𝑨

𝐌𝐚𝐜𝑘

(𝑚, 𝑡)
𝐕𝐞𝐫𝑘 𝑏

Definition. A message authentication code Π is existentially unforgeable under chosen message 
attack (EUF-CMA) if, for every PPT adversary 𝑨,

Pr 𝑨 wins MacForge Π, 𝑛 ≤ negl 𝑛 .



RECAP: CONSTRUCTING SECURE MACs

Proof idea.

• the first pair (𝑚, 𝑡) is the adversary’s query;

• the second pair (𝑚′, 𝑡′) is the adversary’s claimed forgery;

• now apply definition of pairwise independent.

Construction (Carter-Wegman). Let 𝑓: 𝐾 ×𝑀 → 𝑇 be a pairwise-independent function family. Define a 
MAC (with canonical verification) as follows:
• 𝐊𝐞𝐲𝐆𝐞𝐧: output uniformly random 𝑘 ← 𝐾;
• 𝐌𝐚𝐜: on input a key 𝑘 and message 𝑚 ∈ 𝑀, output tag 𝑓𝑘(𝑚).

Theorem. The Carter-Wegman MAC with a pairwise-independent function is 1-EUF-CMA 
against arbitrary adversaries.

Definition. A keyed function family 𝑓: 𝐾 × 𝑀 → 𝑇 is pairwise independent if, for every 𝑚 ≠ 𝑚′ in 𝑀
and all 𝑡, 𝑡′ in 𝑇, we have

Pr
𝑘∈𝐾

𝑓𝑘 𝑚 = 𝑡 ∧ 𝑓𝑘 𝑚′ = 𝑡′ =
1

𝑇 2



RECAP: CONSTRUCTING SECURE MACs

Pairwise-independent functions: random lines in ℤ𝑝.

• Input and output spaces: ℤ𝑝 = {0,1,2, … , 𝑝 − 1} for a prime 𝑝.

• Key space: ℤ𝑝× ℤ𝑝.

• All arithmetic will be modulo 𝑝.

• Recall: since 𝑝 is a prime, we have multiplicative inverses (and can easily compute them.)

For any pair 𝑎, 𝑏 ∈ ℤ𝑝× ℤ𝑝, define
𝑓𝑎,𝑏 𝑥 ≔ 𝑎 ⋅ 𝑥 + 𝑏

Can extend this idea…

• take random polynomials over ℤ𝑝;

• keys get a bit bigger, but now you need degree-many points to learn the function;

• get info-theoretic 𝑞-time MACs for any fixed 𝑞.

What about arbitrary-many queries?

𝑥, 𝑓 𝑥

𝑥′, 𝑓 𝑥′

𝑥, 𝑓 𝑥

𝑥′, 𝑓 𝑥′



RECAP: PRF MAC

Notes.

• messages are of fixed length;

• tags are of length ℓ 𝑛 ; we can pick this however we want (by selecting the right PRF)…

• … but careful: recall trivial tag-guessing attack, which succeeds with probability 2−ℓ 𝑛 .

Proof.

• similar to IND-CPA proof:

1. show that a scheme with a perfectly random function is statistically unforgeable;

2. then show that a forger for the PRF MAC would imply a distinguisher for the PRF.

Construction (PRF MAC). Let 𝑭: 0,1 𝑛 × 0,1 𝑚 → 0,1 ℓ be a PRF. Define a MAC 
(with canonical verification) as follows:
• 𝐊𝐞𝐲𝐆𝐞𝐧: output uniformly random 𝑘 ← 0,1 𝑛;
• 𝐌𝐚𝐜: on input a key 𝑘 and message 𝑚 ∈ 0,1 𝑚, output tag 𝑭𝑘(𝑚).



PRF MAC SECURITY

Proof.

• suppose we use a completely random function 𝑹 in place of 𝑭𝑘;

• recall: the candidate forgery message 𝑚 has to be fresh;

• this means: 𝑹(𝑚) has yet to be queried;

• it follows that 𝑡 = 𝑹(𝑚) is uniformly random;

• so 𝑨 loses against random scheme: Pr 𝑡 = 𝑡∗ = 2−ℓ 𝑛 .

Now suppose 𝑨 wins against pseudorandom scheme…

… then we build a distinguisher for 𝑭 – a contradiction!

Construction (PRF MAC). Let 𝑭: 0,1 𝑛 × 0,1 𝑚 → 0,1 ℓ be a PRF. Define a MAC 
(with canonical verification) as follows:
• 𝐊𝐞𝐲𝐆𝐞𝐧: output uniformly random 𝑘 ← 0,1 𝑛;
• 𝐌𝐚𝐜: on input a key 𝑘 and message 𝑚 ∈ 0,1 𝑚, output tag 𝑭𝑘(𝑚).

Theorem. The PRF MAC is EUF-CMA (against PPT adversaries.)

𝑨

𝐌𝐚𝐜𝑘

(𝑚, 𝑡∗)
𝐕𝐞𝐫𝑘 𝑏



Construction (PRF MAC). Let 𝑭: 0,1 𝑛 × 0,1 𝑚 → 0,1 ℓ be a PRF. Define a MAC 
(with canonical verification) as follows:
• 𝐊𝐞𝐲𝐆𝐞𝐧: output uniformly random 𝑘 ← 0,1 𝑛;
• 𝐌𝐚𝐜: on input a key 𝑘 and message 𝑚 ∈ 0,1 𝑚, output tag 𝑭𝑘(𝑚).

Theorem. The PRF MAC is EUF-CMA (against PPT adversaries.)

PRF MAC SECURITY

Proof (continued.)

How to build the distinguisher? Simulate EUF-CMA!

Two cases:

1. 𝑮 sampled as a random function;

(and 𝑨 loses, by last slide.)

2. 𝑮 sampled as 𝑭𝑘 for random 𝑘;

(and 𝑨 wins, by assumption.)

Result: a distinguisher between case 1 and case 2.

𝑫

• keep a list 𝐿 = {𝑚1, 𝑚2, … } of all 
queries made;

• when 𝑨 outputs (𝑚, 𝑡∗), check that it 
verifies, and that 𝑚 ∉ 𝐿.

If checks pass (i.e., 𝑨 won) output 1.
Otherwise output 0.

𝑨

𝐌𝐚𝐜

(𝑚, 𝑡∗)
𝐕𝐞𝐫 𝑏𝑮



PRACTICAL MACs

In practice…

• one-time (or 𝑞-time) MACs are not used much, except as building blocks;

• and the PRF MAC is too inefficient;

• in general, PRFs for arbitrary input/output lengths are quite inefficient;

Block ciphers! 

• are typically much more practical;

• these are PRFs with the same input and output length;

• [ another nice property we won’t need for now: they are invertible! ]

One of the most common MACs on the Internet…

• is the CBC-MAC, which uses block ciphers;

• the CBC stands for “cipher block chaining”;

• let’s see how it works.



CBC-MAC

In pictures:

Construction (CBC-MAC). Let 𝑭: 0,1 𝑛 × 0,1 𝑛 → 0,1 𝑛 be a PRF, and ℓ(𝑛) any polynomial.
Define a deterministic MAC as follows:
• 𝐊𝐞𝐲𝐆𝐞𝐧: output uniformly random 𝑘 ← 0,1 𝑛;

• 𝐌𝐚𝐜: on input a key 𝑘 and message 𝑚 ∈ 0,1 ℓ 𝑛 ⋅𝑛 , do:
• split 𝑚 up: 𝑚 = (𝑚1, 𝑚2, 𝑚3, … ,𝑚ℓ) into chunks of length 𝑛;
• set 𝑡0 ≔ 0𝑛 and 𝑡𝑖 ≔ 𝑭𝑘(𝑡𝑖−1 ⊕𝑚𝑖) for 0 < 𝑖 ≤ ℓ.
• output 𝑡ℓ.

𝑚 = (𝑚1, 𝑚2, 𝑚3, … ,𝑚ℓ)

𝑭𝑘

𝑚1

𝑭𝑘⊕

𝑚2

𝑭𝑘⊕

𝑚3

. . . 𝑭𝑘⊕

𝑚ℓ

𝑡ℓ



CBC-MAC

CBC-MAC is secure for fixed-length messages (see book.)

What does this mean?

• at key generation time, everyone needs to agree on a fixed length;

• for CBC-MAC, this amounts to selecting the function ℓ 𝑛 ;

• after that point, all messages to be authenticated must be of length ℓ 𝑛 ⋅ 𝑛;

• any deviation might result in an attack!

What happens if we use it to authenticate a message of different length anyway?

𝑭𝑘

𝑚1

𝑭𝑘⊕

𝑚2

𝑭𝑘⊕

𝑚3

. . . 𝑭𝑘⊕

𝑚ℓ

𝑡ℓ



CBC-MAC

… attacks do indeed become possible.

CBC-MAC is not secure for variable-length messages. The trouble:

• there’s nothing special about the start or the end of these chains;

• this introduces vulnerabilities.

The so-called Encrypted-CBC-MAC fixes this:

• key generation now samples two keys 𝑘, 𝑘′ for the PRF;

• the chain is “capped” with an application of 𝑭𝑘′.

𝑭𝑘

𝑚1

𝑭𝑘⊕

𝑚2

𝑭𝑘⊕

𝑚3

. . . 𝑭𝑘⊕

𝑚ℓ

𝑡ℓ𝑭𝑘′ 𝑡



ENCRYPTED-CBC-MAC

Proof is somewhat involved (but mostly a matter of complicated bookkeeping.)

• ok, so now we can authenticate variable-length messages in a fairly efficient way;

• is CBC-MAC the only way? Could there be something even more efficient?

• maybe first, as a general matter: why should we care?

In general, having multiple ways to achieve the same crypto goal is helpful!

• different efficiency tradeoffs;

• different computational assumptions;

• could lead to new ideas!

Different approach: use hash functions.

Theorem. The Encrypted-CBC-MAC is EUF-CMA for arbitrary-length messages.



HASH FUNCTIONS

What are hash functions?

A hash function is just a function which compresses its input:

ℋ: 0,1 𝑚 → 0,1 ℓ for ℓ < 𝑚.

In practice:

• ℋ is implementable with a very fast algorithm;

• this algorithm is completely public;

• ℓ is a fixed constant (e.g., 128) while 𝑚 might be arbitrary;

How do you design them?

• a bit like PRGs: part art, part science;

• analysis is difficult.

MD5
1992

SHA3
2015



HASH FUNCTIONS

What are they good for?

They compress their input: ℋ: 0,1 𝑚 → 0,1 ℓ for ℓ < 𝑚.

So obviously, some 𝑦 ∈ 0,1 ℓ have a lot of preimages: at least 2𝑚−ℓ.

But, for a well-designed hash function:

• ℎ seems to be 1-to-1;

• typically hard to find two inputs 𝑥, 𝑥′ with the same digest ℋ(𝑥);

• typically also hard: given a digest 𝑦, find an input 𝑥 such that ℋ 𝑥 = 𝑦.

This is why they are used, e.g., in git:

• files are not compared directly;

• instead, a hash (digest) of each file is stored, and the hashes are compared;

• this allows for all sorts of integrity checks without a massive computational overhead.

They’re also used, e.g., in blockchains (e.g., in Bitcoin) for similar reasons.

𝑥 𝑥′

𝑦

ℋℋ

ℋ ℋ



HASH FUNCTIONS

This should remind you of something:

• authentication!

• if comparing files (messages) is basically equivalent to comparing their hash digests…

• … why not just MAC the digest? Huge efficiency gain!

• this actually works, and is called “Hash-and-MAC.” 

Actually, hash functions are even crazier…

For a well-designed hash function ℎ:

• ℎ seems to be indistinguishable from a random function!

• and the only interesting thing we know to do with them…

• … is just evaluate them!

(Think back to our discussion on oracles!)

But let’s slow down. This is all very informal so far.



HASH FUNCTIONS, FORMALLY

We will think about keyed hash functions.

We write ℋ𝑠 𝑥 ≔ ℋ(𝑠, 𝑥).

How to use it?

Typically:

1. Sample 𝑠 ← 𝐊𝐞𝐲𝐆𝐞𝐧(1𝑛);

2. Make 𝑠 public to everyone; 

3. Now anyone can evaluate ℋ𝑠 on any string 𝑥 and get the hash digest ℋ𝑠 𝑥 .

Definition. A hash function ℋ is a polynomial-time computable function family

ℋ: 0,1 𝑑 × 0,1 ∗ → 0,1 ℓ

equipped with a PPT algorithm 𝐊𝐞𝐲𝐆𝐞𝐧 which, on input 1𝑛, outputs a key 𝑠 ∈ 0,1 𝑑.

Why? In practice, anyone can look up 
hash function spec



COLLISION-RESISTANCE

What security properties do we want?

There are many. An important one: collision-resistance.

• as we saw, every hash function is necessarily many-to-one;

• but in a good hash function, it should be hard to find inputs with the same digest.

If this sounds impossible: 

Think about a random function 𝑹: 0,1 2𝑛 → 0,1 𝑛

• it’s true that each 𝑦 ∈ 0,1 𝑛 has (roughly) 2𝑛 preimages;

• let 𝑋𝑦 = 𝑥 ∈ 0,1 2𝑛 ∶ 𝑹 𝑥 = 𝑦 be the set of preimages of 𝑦;

• Note: 𝑋𝑦 is a random subset of size 2𝑛 in a set of size 22𝑛;

• In other words: for any 𝑧, Pr
𝑹
[𝑧 ∈ 𝑋𝑦] ≈ 2−𝑛.

So, there are indeed functions for which it’s hard to find preimages and collisions.

(Actually, in a certain sense, most functions have this property.)

𝑥 𝑥′

𝑦

ℋℋ



COLLISION-RESISTANCE

How to define?

As usual: with a game! 

Let Π = 𝐊𝐞𝐲𝐆𝐞𝐧,ℋ be a hash function, and 𝑨 an algorithm.

The game HashColl Π, 𝑨 proceeds as follows:

1. Generate key: 𝑠 ← 𝐊𝐞𝐲𝐆𝐞𝐧;

2. 𝑨 receives 𝑠 and outputs 𝑥, 𝑥′ ∈ 0,1 ∗;

We say 𝑨 wins if ℋ𝑠 𝑥 = ℋ𝑠(𝑥′) and 𝑥 ≠ 𝑥′.

𝑥 𝑥′

𝑦

ℋℋ

Definition. A hash function Π = 𝐊𝐞𝐲𝐆𝐞𝐧,ℋ is collision-resistant if, for every PPT adversary 𝑨, 

Pr 𝑨 wins HashColl Π, 𝑨 ≤ negl 𝑛 .



WEAKER PROPERTIES

We could ask for weaker properties.

“target-collision resistance”

• adversary has a harder task:

• given a fixed 𝑥, 𝑨 must find 𝑥′ ≠ 𝑥 such that ℋ𝑠 𝑥′ = ℋ𝑠 𝑥 .

• clearly implied by collision-resistance.

“preimage resistance”

• slightly different, but still harder task:

• given a random 𝑦, find 𝑥 such that ℋ𝑠 𝑥 = 𝑦.

• implied by collision-resistance:

• if you can find preimages: (i.) pick a random 𝑥; (ii.) run preimage-finding on 𝑦 ≔ ℋ𝑠 𝑥 ;

• check: with good probability over 𝑥, preimage-finding will yield 𝑥′ such that 𝑥′ ≠ 𝑥.



WEAKER PROPERTIES

By the way:

“preimage resistance” is something like a “one-way” property:

1. Easy to evaluate;

2. Hard to invert on random inputs.

• such “one-way functions” are very important in the foundations of crypto;

• we will (probably) define them formally later in the course;

• you can build PRGs out of them, so by extension almost everything we’ve seen so far;

• … and some cool things we haven’t! (next lecture)

But back to collision-resistance…



HASH-and-MAC

What is collision resistance good for?

Authentication!

In pictures: 𝑚 𝑚′

𝑦

ℋℋ

Construction (Hash-and-MAC). Let 

• Π = (𝐊𝐞𝐲𝐆𝐞𝐧,𝐌𝐚𝐜) be a fixed-length message authentication code (MAC), and
• ΠH = 𝐊𝐞𝐲𝐆𝐞𝐧H,ℋ be a hash function.

Define an arbitrary-length deterministic MAC Π′ = (𝐊𝐞𝐲𝐆𝐞𝐧′,𝐌𝐚𝐜′) as follows:

• (key generation) 𝐊𝐞𝐲𝐆𝐞𝐧′: on input 1𝑛, outputs 𝑘′ ← 𝐊𝐞𝐲𝐆𝐞𝐧 1n , 𝐊𝐞𝐲𝐆𝐞𝐧H 1𝑛 .

• (tag generation) 𝐌𝐚𝐜′: on key (𝑘, 𝑠) and message 𝑚, outputs 𝑡 ≔ 𝐌𝐚𝐜𝑘(ℋ
𝑠 𝑚 ).

𝑚 ℋ𝑠 𝐌𝐚𝐜𝑘 𝑡
0,1 ∗ 0,1 ℓ



HASH-and-MAC

Proof idea:

If adversary forges on message 𝑚∗ then either/or:

1. 𝑚∗ is mapped to same 𝑧 as some queried 𝑚: collision!

2. 𝑚∗ is not mapped to same as any other: forgery on Π!

Construction (Hash-and-MAC). Let 

• Π = (𝐊𝐞𝐲𝐆𝐞𝐧,𝐌𝐚𝐜) be a fixed-length message authentication code (MAC), and
• ΠH = 𝐊𝐞𝐲𝐆𝐞𝐧H,ℋ be a hash function.

Define an arbitrary-length deterministic MAC Π′ = (𝐊𝐞𝐲𝐆𝐞𝐧′,𝐌𝐚𝐜′) as follows:

• (key generation) 𝐊𝐞𝐲𝐆𝐞𝐧′: on input 1𝑛, outputs 𝑘′ ← 𝐊𝐞𝐲𝐆𝐞𝐧 1n , 𝐊𝐞𝐲𝐆𝐞𝐧H 1𝑛 .

• (tag generation) 𝐌𝐚𝐜′: on key (𝑘, 𝑠) and message 𝑚, outputs 𝑡 ≔ 𝐌𝐚𝐜𝑘(ℋ
𝑠 𝑚 ).

Theorem. If Π is an EUF-CMA fixed-length MAC, and ΠH is a collision-resistant hash function,
then the Hash-and-MAC construction Π′ is an EUF-CMA arbitrary-length MAC.

𝑚 ℋ𝑠 𝐌𝐚𝐜𝑘 𝑡

𝑚∗

𝑧

𝑚∗ ℋ𝑠 𝐌𝐚𝐜𝑘 𝑡
𝑧



HASH-and-MAC

Proof idea: If forgery on 𝑚∗ then either/or:

1. 𝑚∗ is mapped to same 𝑧 as some queried 𝑚: collision!

2. 𝑚∗ is not mapped to same as any other: forgery on Π!

Recall EUF-CMA and MacForge experiment.

• let 𝑄 be the set of queries made by 𝑨, and (𝑚∗, 𝑡∗) its output;

• let 𝑬 be the green event: ∃𝑚 ∈ 𝑄 such that ℋ𝑠 𝑚 = ℋ𝑠(𝑚∗);

Calculate:

Pr[𝐴 wins MacForge Π′ ] = 

= Pr 𝐴 wins MacForge Π′ ∧ 𝑬 + Pr 𝐴 wins MacForge Π′ ∧ ഥ𝑬

≤ Pr 𝑬 + Pr 𝐴 wins MacForge Π′ ∧ ഥ𝑬 .

We will show that both of these terms are negligible. How?

𝑚 ℋ𝑠 𝐌𝐚𝐜𝑘 𝑡
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𝑨

𝐌𝐚𝐜𝑘 ∘ ℋ
𝑠

(𝑚∗, 𝑡∗)
𝐕𝐞𝐫(𝑘,𝑠) 𝑏



HASH-and-MAC

Proof idea: If forgery on 𝑚∗ then either/or:

1. 𝑚∗ is mapped to same 𝑧 as some queried 𝑚: collision!

2. 𝑚∗ is not mapped to same as any other: forgery on Π!

Controlling probability of 𝑬:

• 𝑬 is the green event: ∃𝑚 ∈ 𝑄 such that ℋ𝑠 𝑚 = ℋ𝑠(𝑚∗);

• want to show: Pr 𝑬 ≤ negl 𝑛 .

• how? Well, suppose it’s not, and consider this algorithm:

1. Receive hash key 𝑠 as input. Sample 𝐌𝐚𝐜 key 𝑘; 

2. Run 𝑨 with oracle 𝐌𝐚𝐜𝑘 ∘ ℋ
𝑠;

3. Output 𝑚∗ and a random 𝑚 ∈ 𝑄.

Check: the probability that this algorithm finds a collision in ℋ𝑠 is at least Pr 𝑬 / 𝑄 .
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𝐕𝐞𝐫(𝑘,𝑠) 𝑏



HASH-and-MAC

Proof idea: If forgery on 𝑚∗ then either/or:

1. 𝑚∗ is mapped to same 𝑧 as some queried 𝑚: collision!

2. 𝑚∗ is not mapped to same as any other: forgery on Π!

What’s left:

Control  Pr 𝑨 wins MacForge Π′ ∧ ഥ𝑬 .

• what is this quantity?

• probability that 𝑨 wins the forgery game…

• … and for all queried 𝑚, ℋ𝑠 𝑚 ≠ ℋ𝑠(𝑚∗).

Stated a bit differently:

• probability that 𝑨 wins the forgery game…

• … and for all inputs 𝑧 to 𝐌𝐚𝐜𝑘 oracle, 𝑧 ≠ 𝑧∗ ≔ ℋ𝑠(𝑚∗).

Point: in this case, we should be able to win a MacForge game against Π!
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HASH-and-MAC

Proof idea: If forgery on 𝑚∗ then either/or:

1. 𝑚∗ is mapped to same 𝑧 as some queried 𝑚: collision!

2. 𝑚∗ is not mapped to same as any other: forgery on Π!

What’s left:

Control Pr 𝑨 wins MacForge Π′ ∧ ഥ𝑬 . If it’s large…

… then we should be able to win a MacForge game against Π!

Here’s how:

1. Receive 𝐌𝐚𝐜𝑘 oracle. Sample hash key 𝑠;

2. When queried with 𝑚 ∈ 0,1 ∗…

i. Hash it: 𝑧 ≔ ℋ𝑠(m);

ii. MAC it (using oracle): 𝑡 ≔ 𝐌𝐚𝐜𝑘 z ; return 𝑡.

3. When 𝑨 outputs 𝑚∗, output ℋ𝑠 𝑚∗ .

Check: probability this wins MacForge versus Π is exactly Pr 𝑨 wins MacForge Π′ ∧ ഥ𝑬 .
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HASH-and-MAC

Proof idea: If forgery on 𝑚∗ then either/or:

1. 𝑚∗ is mapped to same 𝑧 as some queried 𝑚: collision!

2. 𝑚∗ is not mapped to same as any other: forgery on Π!

Recall EUF-CMA and MacForge experiment.

• let 𝑄 be the set of queries made by 𝑨, and (𝑚∗, 𝑡∗) its output;

• let 𝑬 be the green event: ∃𝑚 ∈ 𝑄 such that ℋ𝑠 𝑚 = ℋ𝑠(𝑚∗);

Calculate:

Pr[𝐴 wins MacForge Π′ ] = 

= Pr 𝐴 wins MacForge Π′ ∧ 𝑬 + Pr 𝐴 wins MacForge Π′ ∧ ഥ𝑬

≤ Pr 𝑬 + Pr 𝐴 wins MacForge Π′ ∧ ഥ𝑬

≤ negl 𝑛 + negl 𝑛 ≤ negl 𝑛 .
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