
MATH/CMSC 456 :: UPDATED COURSE INFO

Instructor: Gorjan Alagic (galagic@umd.edu); ATL 3102, office hours: by appointment

Textbook: Introduction to Modern Cryptography, Katz and Lindell;

Webpage: alagic.org/cmsc-456-cryptography-spring-2020/ (check for updates);

Piazza: piazza.com/umd/spring2020/cmsc456

ELMS: active, slides posted there, assignments will be as well.

Gradescope: active, access through ELMS.

Check these setups asap, and let me know if you run into issues!

TAs (Our spot: shared open area across from IRB 5234)

• Elijah Grubb (egrubb@cs.umd.edu) 11am-12pm TuTh (Iribe);

• Justin Hontz (jhontz@terpmail.umd.edu) 1pm-2pm MW (Iribe);

Additional help:

• Chen Bai (cbai1@terpmail.umd.edu) 3:30-5:30pm Tu (2115 ATL, starting Feb 4)

• Bibhusa Rawal (bibhusa@terpmail.umd.edu) 3:30-5:30pm Th (2115 ATL, starting Feb 6)

mailto:galagic@umd.edu
http://www.alagic.org/cmsc-456-cryptography-spring-2020/

RECAP : LOGISTICS

Course plan (big picture)

• 8 lectures: symmetric-key crypto

• 4 lectures: RSA and Diffie-Hellman (Carl Miller); 2 lectures : secret sharing (Bill Gasarch);

• midterm;

• 10 lectures: public-key crypto II, advanced topics;

• final.

Grading: 40% homework, 30% midterm exam, 30% final exam

Homework(~ 10 sets): collaboration allowed, must write up your own, no late homework whatsoever (but
lowest grade will be dropped); first set distributed 2nd week (ELMS → Gradescope.)

Exams:

• closed book/device, one two-sided page of notes;

• midterm March 31st ;

• final May 18th .

RECAP : HISTORICAL CIPHERS

Caesar cipher

• basic shift cipher;

• broken: brute-force keysearch.

Substitution cipher

• permute alphabet instead of shifting;

• broken: frequency analysis.

Vigenére cipher

• “add” plaintext and repeated passphrase;

• broken: frequency analysis + brute-force key.

ATTACK AT DAWN

DWWDFNDWGDZR

decryptencrypt

message (plaintext)

ciphertext

A B C D E F G H I J K L M ⋯

encrypt

decrypt

𝐴 ↦ 𝑋
𝐵 ↦ 𝐹
𝐶 ↦ 𝐷
𝐷 ↦ 𝐿
𝐸 ↦ 𝑃
…
…

key

YOUCANEXPECTNOHELPFROMTHISSIDEOFTHERIVER

VICTORVICTORVICTORVICTORVICTORVICTORVICT

UXXWPFAGSYRLJXKYAHBARGIZEBVCSWKOWBTJEEHL

+

=

UXXWPF

AGSYRL

JXKYAH

BARGIZ

EBVCSW

KOWBTJ

EEHL

RECAP : MODERN CRYPTO

Why we do crypto this way?

• history was not kind to previous ciphers;

• from the 70s on: a much more rigorous approach;

• be as careful and formal as possible when describing the task, the setting, what it means to be “secure,”
the cryptosystem itself;

• when possible, try to establish security via rigorous reasoning (i.e., theorem-proving.)

The course is about: the above approach, in the theoretical setting:

“possible in principle … vs impossible, even in principle”

Some things we won’t study:

• IT security

• real-world implementation details

• specific performance/security tradeoffs

These are interesting things too, just not in scope.

RECAP: ENCRYPTION SCHEMES

Generic approach to encryption:

• generate key via some algorithm: 𝑘 ← 𝐊𝐞𝐲𝐆𝐞𝐧

• encrypt via some algorithm: 𝑐 ← 𝐄𝐧𝐜𝑘 𝑚

• decrypt via some algorithm: 𝑚 ← 𝐃𝐞𝐜𝑘 𝑐

The triple 𝐊𝐞𝐲𝐆𝐞𝐧, 𝐄𝐧𝐜, 𝐃𝐞𝐜 is called an encryption scheme.

Alice Bob
Eve

𝑘 ← 𝐊𝐞𝐲𝐆𝐞𝐧

𝑘 𝑘

𝑐 ← 𝐄𝐧𝐜𝑘 𝑚

Pick message 𝑚.

𝑐 𝑚 ← 𝐃𝐞𝐜𝑘 𝑐

Correctness:

𝐃𝐞𝐜𝑘 𝐄𝐧𝐜𝑘 𝑚 = 𝑚 for all 𝑚.

RECAP: ENCRYPTION SCHEMES: ONE-TIME PAD

Examples: one-time pad (Vernam cipher, ~1882)

• Key generation : sample uniformly random 𝑘 ∈ 0,1 𝑛

• Encryption : 𝐄𝐧𝐜𝑘 𝑚 = 𝑚⊕𝑘

• Decryption : 𝐃𝐞𝐜𝑘 𝑐 = 𝑐 ⊕ 𝑘 ;

(note 1: messages are interpreted as bitstrings.)

(note 2: key length = message length = ciphertext length = 𝑛.)

We proved that this is secure under one (and hence all) of our notions of perfect secrecy.

Basic proof idea:

• key is uniformly random;

• ciphertext is a “shift” of the key by some string (namely the plaintext);

• hence ciphertext is also uniformly random, for any plaintext;

• this fulfills one of the definitions of perfect secrecy.

Bitwise XOR (+mod 2):
0⊕ 0 = 0
0⊕ 1 = 1
1⊕ 1 = 0

Food for thought.
OTP key space is of size 2𝑛. If 𝑛
is small (e.g., 28 = 256), is brute-
force key search possible?

Get very friendly
and familiar with
OTP: it will keep

cropping up!

RECAP: ENCRYPTION SCHEMES: SECRECY

Definition 1. (very informal) An encryption scheme is semantically secret if, for all choices of adversary 𝑨,
message 𝑚, “prior information” function 𝑔, and “target information” function 𝑓,the following property holds:

Pr 𝑓 𝑚 ← 𝑨 𝑔 𝑚 , 𝐄𝐧𝐜𝒌 𝑚 = Pr 𝑓 𝑚 ← 𝑨 𝑔 𝑚 .

Definition 2. An encryption scheme is perfectly secret if, for every plaintext distribution ℳ, every
plaintext 𝑚, and every ciphertext 𝑐,

Pr 𝑀 = 𝑚 𝐶 = 𝑐] = Pr 𝑀 = 𝑚 .

Definition 3. An encryption scheme is perfectly secret if, for every plaintext distribution ℳ, every
plaintext pair 𝑚,𝑚′, and every ciphertext 𝑐,

Pr
𝑘
𝐄𝐧𝐜𝑘 𝑚 = 𝑐 = Pr

𝑘
[𝐄𝐧𝐜𝑘 𝑚′ = 𝑐]

Definition 4. An encryption scheme has perfectly indistinguishable ciphertexts if, for every adversary 𝑨,

Pr
𝑘
𝑨 wins the IND game =

1

2
.

Theorem 1. Definitions 1-4 are all equivalent.

II. (SIMPLE) ENCRYPTION
(continued)

Reading: Ch.2 (p.25-40)

ONE-TIME PAD : THE SCHEME

One-time pad

• Key generation : sample uniformly random 𝑘 ∈ 0,1 𝑛;

• Encryption : 𝐄𝐧𝐜𝑘 𝑚 = 𝑚⊕𝑘;

• Decryption : 𝐃𝐞𝐜𝑘 𝑐 = 𝑐 ⊕ 𝑘 .

The OTP achieves perfect secrecy. Are there other schemes that do the job?

• what this means: basically only one way to build an encryption scheme that satisfies perfect secrecy;

• … and the one-time pad is it.

Shannon’s Theorem. Let 𝐊𝐞𝐲𝐆𝐞𝐧, 𝐄𝐧𝐜,𝐃𝐞𝐜 be an encryption scheme that satisfies perfect secrecy.
Let ℳ,𝒦, 𝒞 denote the message, key, and ciphertext sets, respectively. Then 𝒦 ≥ ℳ . Moreover, if
𝒦 = |ℳ|, then

1. 𝐊𝐞𝐲𝐆𝐞𝐧 outputs a uniformly random key in 𝒦, and
2. For every 𝑚 ∈ ℳ and every 𝑐 ∈ 𝒞, there exists a unique key 𝑘 ∈ 𝒦 such that 𝐄𝐧𝐜𝑘 𝑚 = 𝑐.

ONE-TIME PAD : IS IT REALLY “PERFECT”?

Recall: we had a bunch of assumptions.

• Alice and Bob can share a secret in advance;

• they have their own private spaces;

• Alice can send only one transmission, on a single channel;

• Eve (eavesdropper) can observe everything that is transmitted on that channel.

• Eve cannot do anything else.

Alice Bob
Eve

What if they can’t?

What if Eve can look at
Alice’s screen? What if they want to send

multiple messages?

What if Eve can also change
messages in transit?

What if Eve knows something
about what Alice will send?

ONE-TIME PAD : IS IT REALLY “PERFECT”?

Consider: using OTP twice, i.e., to send 2𝑛 bits.

Shannon’s theorem: for perfect secrecy, 𝒦 = |ℳ|. But here 𝒦 = ℳ /2. So not perfectly secret.

Some attack examples:

(1.) If Eve can’t know any of the plaintexts:

• she observes two ciphertexts 𝑐, 𝑐′ ∈ 0,1 𝑛;

• they were generated with same key: 𝑐 = 𝑚⊕ 𝑘 and 𝑐′ = 𝑚′⊕𝑘;

• bitwise, so 𝑐𝑗 = 𝑐𝑗′ if and only if 𝑚𝑗 = 𝑚𝑗′. Plaintext information is leaking!

(2.) If Eve can know one of the plaintexts:

• she is told 𝑚, and observes two ciphertexts 𝑐, 𝑐′ ∈ 0,1 𝑛;

• now 𝑐 = 𝑚⊕ 𝑘, so Eve computes 𝑘 = 𝑐 ⊕𝑚;

• complete key recovery, and trivial to recover 𝑚′.

In fact, Shannon says you can’t even use OTP to send 𝑛 + 1 bits securely!

SCHEME BROKEN

SCHEME BROKEN

Corollary. To encrypt a hard drive,
you need another hard drive of equal
size to store the decryption key.

ONE-TIME PAD : IS IT REALLY “PERFECT”?

Recall: we had a bunch of assumptions.

• Alice and Bob can share a secret in advance;

• they have their own private spaces;

• Alice can send only one transmission, on a single channel;

• Eve (eavesdropper) can observe everything that is transmitted on that channel.

• Eve cannot do anything else.

Later: we will see that the other relaxations are also a disaster for the OTP.

So what does this mean?

By Shannon’s theorem, it means we have to give up on something in perfect secrecy.

What if they can’t?

What if Eve can look at
Alice’s screen? What if they want to send

multiple messages?

What if Eve can also change
messages in transit?

What if Eve knows something
about what Alice will send?

III. COMPUTATIONALLY-SECURE
ENCRYPTION

Reading: p.43-70

WHAT DO WE RELAX?

Shannon: if you want fancy features (like long messages) you have to give up something.

What can we give up?

• If the adversary can break our scheme, but it takes them 10 billion years, do we care?

• If the adversary can break our scheme, but only with probability 1 in 10100, do we care?

• Probably not. Can we leverage that somehow? And get more out of crypto?

This “simple” change allows us to go from boring, almost useless crypto (OTP) …

… to amazing crypto whose limits we are still trying to understand!

Definition 4. An encryption scheme has perfectly indistinguishable ciphertexts if, for every adversary 𝑨,

Pr
𝑘
𝑨 wins the IND game =

1

2
.

COMPUTATIONAL CRYPTO: A PREVIEW

Let’s postpone technical details for now.

What could this give us? Recall OTP:

• Key generation : sample uniformly random 𝑘 ∈ 0,1 𝑛;

• Encryption : 𝐄𝐧𝐜𝑘 𝑚 = 𝑚⊕𝑘;

• Decryption : 𝐃𝐞𝐜𝑘 𝑐 = 𝑐 ⊕ 𝑘 .

In pictures:

Reasonable to hope: if no “feasible” algorithm can distinguish 𝑮(𝑘) from random, then this scheme is
secure against all “feasible” adversaries.

Remember from programming:
Random number generators: deterministic
programs that turn a small seed into a much
longer sequence of “random-looking” numbers.
Suppose

𝑮: 0,1 𝑛 → 0,1 2𝑛

is such a generator.

𝑘

0,1 𝑛 ⨁ 0,1 𝑛

plaintext ciphertext
0,1 2𝑛 ⨁ 0,1 2𝑛

plaintext ciphertext

𝑮

𝑘n bits of perfect
randomness 2n bits of “good enough”

randomness?

COMPUTATIONAL CRYPTO: A PREVIEW

Let’s postpone technical details for now.

What could this give us? Recall OTP:

• Key generation : sample uniformly random 𝑘 ∈ 0,1 𝑛;

• Encryption : 𝐄𝐧𝐜𝑘 𝑚 = 𝑚⊕𝑘;

• Decryption : 𝐃𝐞𝐜𝑘 𝑐 = 𝑐 ⊕ 𝑘 .

In pictures:

Reasonable to hope: if no “feasible” algorithm can distinguish 𝑮(𝑘) from random, then this scheme is
secure against all “feasible” adversaries.

Remember from programming:
Random number generators: deterministic
programs that turn a small seed into a much
longer sequence of “random-looking” numbers.
Suppose

𝑮: 0,1 𝑛 → 0,1 2𝑛

is such a generator.

𝑘

0,1 𝑛 ⨁ 0,1 𝑛

plaintext ciphertext
0,1 𝑛 ⨁ 0,1 𝑛

𝑮

𝑘n bits of perfect
randomness 2n bits of “good enough”

randomness?

0,1 𝑛 ⨁ 0,1 𝑛

COMPUTATIONAL CRYPTO: CHALLENGES

Let’s postpone technical details for now.

What could this give us? Recall OTP:

• Key generation : sample uniformly random 𝑘 ∈ 0,1 𝑛;

• Encryption : 𝐄𝐧𝐜𝑘 𝑚 = 𝑚⊕𝑘;

• Decryption : 𝐃𝐞𝐜𝑘 𝑐 = 𝑐 ⊕ 𝑘 .

In pictures:

Reasonable to hope: if no “feasible” algorithm can distinguish 𝑮(𝑘) from random, then this scheme is
secure against all “feasible” adversaries.

Remember from programming:
Random number generators: deterministic
programs that turn a small seed into a much
longer sequence of “random-looking” numbers.
Suppose

𝑮: 0,1 𝑛 → 0,1 2𝑛

is such a generator.

𝑘

0,1 𝑛 ⨁ 0,1 𝑛

plaintext ciphertext
0,1 𝑛 ⨁ 0,1 𝑛

𝑮

𝑘n bits of perfect
randomness 2n bits of “good enough”

randomness?

0,1 𝑛 ⨁ 0,1 𝑛

Could we prove this?

COMPUTATIONAL CRYPTO: CHALLENGES

This intuition seems sound. How can we formalize it?

1. Notions to define:

• “random-looking”

• “good-enough” randomness

• “feasible” vs “infeasible” algorithms

• “secure” encryption (can’t be same as perfect secrecy, we gave up on that.)

2. Stuff to construct:

• a function which produces “good enough” randomness against “feasible” algorithms

3. Theorems we have to prove:

• the construction in the previous slide is secure.

EFFICIENT vs INEFFICIENT ALGORITHMS

What should “feasible” (or efficient) mean?

• lots of natural choices, but…

• we are interested in “possible in principle” vs “not possible, even in principle;”

• we want the theory to be simple and easy to work with;

• in particular, we don’t want to worry about details of the computational model.

To address all of these issues, we will take an approach similar to that of complexity theory.

EFFICIENT vs INEFFICIENT ALGORITHMS

What should “feasible” (or efficient) mean?

• running time measured as a function of input size (e.g., searching a list of size 𝑛 takes time 𝑛; generating a
list of all possible pairs takes time 𝑛2.)

• work asymptotically: we care about the large-𝑛 limit, not what happens for, e.g., 𝑛 = 20;

• randomness: all algorithms are assumed to have access to as many uniformly random coins as needed;

• efficient will mean that the running time is polynomial in the size of the input.

A bit more carefully:

We will often use the shorthand PPT meaning Probabilistic, Polynomial-Time algorithm.

Definition. An algorithm 𝑨 is efficient if there exists a polynomial 𝑝:ℕ → ℕ and a positive integer 𝑁
such that for all 𝑛 > 𝑁 and all 𝑥 ∈ 0,1 𝑛, the running time of 𝑨 on input 𝑥 is at most 𝑝 𝑛 .

EFFICIENT vs INEFFICIENT ALGORITHMS

What about “infeasible”?

• just the negation of “feasible”!

• concretely: the running time is larger than every polynomial

• i.e., bigger than n100 or even n10
100

;

• for example, exponential (e.g., 2𝑛) or more;

• but not necessarily exponential: consider 2√𝑛 or 𝑛log 𝑛 ;

• we use the term superpolynomial.

What about success probability?

Similar approach: asymptotic, polynomial versus superpolynomial.

• efficient : success probability 1/𝑝 𝑛 for some polynomial 𝑝.

• inefficient : success probability smaller than 1/𝑝(𝑛) for all polynomials 𝑝.
also called negligible

and written negl(𝑛).

EFFICIENT vs INEFFICIENT ALGORITHMS

Recall: algorithms can often be repeated to amplify success probability;

Our notions are “stable” under this sort of amplification;

In particular:

• consider some random experiment (e.g., an adversary attacks some cryptosystem.)

• suppose some event 𝑬 (e.g., system is broken) occurs with negligible probability;

• now repeat the experiment 𝑝(𝑛) times for any polynomial 𝑝;

• what is the probability that 𝑬 occurs in at least one of the experiments?

Exercise: it’s still negligible.

COMPUTATIONAL CRYPTO: CHALLENGES

This intuition seems sound. How can we formalize it?

1. Notions to define:

• “random-looking”

• “good-enough” randomness

• “feasible” vs “infeasible” algorithms

• “secure” encryption (can’t be same as perfect secrecy, we gave up on that.)

2. Stuff to construct:

• a function which produces “good enough” randomness against “feasible” algorithms

3. Theorems we have to prove:

• the construction in the previous slide is secure.

PSEUDORANDOMNESS

Cryptographic pseudorandomness

We’re not happy with garden-variety random number generators.

We need something much stronger. We need indistinguishability from perfectly random.

Let 𝑮: 0,1 𝑛 → 0,1 2𝑛. Pick some algorithm 𝑫. Consider these two experiments:

Crucial: 𝒔 is sampled uniformly at random! (Otherwise, 𝑮(𝑠) could simply be a fixed string!)

Want: there is no efficient algorithm for 𝑫 that can distinguish these two experiments.

𝑟 ← 0,1 2𝑛

𝑫𝑟 𝑏 𝑮 𝑫

𝑠 ← 0,1 𝑛

𝑠 𝑏

PSEUDORANDOM GENERATORS

Cryptographic pseudorandomness

Definition. A pseudorandom generator is a deterministic, polynomial-time algorithm 𝑮 satisfying the
following:

1. (expansion) 𝑮: 0,1 𝑛 → 0,1 ℓ 𝑛 for some fixed polynomial ℓ satisfying ℓ 𝑛 > 𝑛 for all 𝑛.
2. (pseudorandomness) for every PPT algorithm 𝑫,

Pr 𝑫 𝑮 𝑠 = 1 − Pr 𝑫 𝑟 = 1 ≤ negl 𝑛 .
𝑠 ← 0,1 𝑛 𝑟 ← 0,1 ℓ(𝑛)

𝑟 ← 0,1 ℓ(𝑛)

𝑫𝑟 𝑏𝑮 𝑫

𝑠 ← 0,1 𝑛

𝑠 𝑏

PSEUDORANDOM GENERATORS (PRGs)

How to break any PRG (in two easy steps).

Step 1: look up the PRG spec online;

Step 2: run the algorithm 𝑫 below.

input: 𝑟 ∈ 0,1 ℓ 𝑛

• try every possible 𝑠 ∈ 0,1 𝑛;

• if you find one such that 𝑮 𝑠 = 𝑟, return 𝟏.

• if not, return 𝟎.

𝑟 ← 0,1 ℓ(𝑛)

𝑫𝑟 𝑏𝑮 𝑫

𝑠 ← 0,1 𝑛

𝑠 𝑏

𝑫 always outputs 1. 𝑫 outputs 0 except
with probability

2𝑛−ℓ 𝑛 .

PSEUDORANDOM GENERATORS (PRGs)

How to break any PRG (in two easy steps).

Step 1: look up the PRG spec online;

Step 2: run the algorithm 𝑫 below.

input: 𝑟 ∈ 0,1 ℓ 𝑛

• try every possible 𝑠 ∈ 0,1 𝑛;

• if you find one such that 𝑮 𝑠 = 𝑟, return 1.

• if not, return 𝟎.

𝑟 ← 0,1 ℓ(𝑛)

𝑫𝑟 𝑏𝑮 𝑫

𝑠 ← 0,1 𝑛

𝑠 𝑏

𝑫 always outputs 1. 𝑫 outputs 0 except
with probability

2𝑛−ℓ 𝑛 .

0,1 ℓ 𝑛

0,1 𝑛

𝑮

𝑟

Pr 𝑟 ∈ 𝑮 0,1 𝑛 ≤
0,1 𝑛

0,1 ℓ 𝑛
= 2𝑛−ℓ 𝑛 ≤ 1/2

⇒ Pr 𝑫 𝑮 𝑠 = 1 − Pr 𝑫 𝑟 = 1 ≥ 1/2.

PSEUDORANDOM GENERATORS (PRGs)

How to construct PRGs.

It’s an art form. Lots of constructions do exist.

For example: is this a PRG?

input: 𝑠 ∈ 0,1 𝑛

• compute 𝑏 = 𝑠1 ⊕𝑠2 ⊕⋯⊕ 𝑠𝑛

• output 𝑠||𝑏 ∈ 0,1 𝑛+1.

If yes, why? If no, how would you break it?

How about this? Is this a PRG?

(input is 256 bytes; output length arbitrary.)

Or this one?

(arithmetic still mod 256)

COMPUTATIONAL CRYPTO: CHALLENGES

This intuition seems sound. How can we formalize it?

1. Notions to define:

• “random-looking”

• “good-enough” randomness

• “feasible” vs “infeasible” algorithms

• “secure” encryption (can’t be same as perfect secrecy, we gave up on that.)

2. Stuff to construct:

• a function which produces “good enough” randomness against “feasible” algorithms

3. Theorems we have to prove:

• the construction in the previous slide is secure.

RECALL: PERFECT SECRECY

Definition 1. (very informal) An encryption scheme is semantically secret if, for all choices of adversary 𝑨,
message 𝑚, “prior information” function 𝑔, and “target information” function 𝑓,the following property holds:

Pr 𝑓 𝑚 ← 𝑨 𝑔 𝑚 , 𝐄𝐧𝐜𝒌 𝑚 = Pr 𝑓 𝑚 ← 𝑨 𝑔 𝑚 .

Definition 2. An encryption scheme is perfectly secret if, for every plaintext distribution ℳ, every
plaintext 𝑚, and every ciphertext 𝑐,

Pr 𝑀 = 𝑚 𝐶 = 𝑐] = Pr 𝑀 = 𝑚 .

Definition 3. An encryption scheme is perfectly secret if, for every plaintext distribution ℳ, every
plaintext pair 𝑚,𝑚′, and every ciphertext 𝑐,

Pr
𝑘
𝐄𝐧𝐜𝑘 𝑚 = 𝑐 = Pr

𝑘
[𝐄𝐧𝐜𝑘 𝑚′ = 𝑐]

Definition 4. An encryption scheme has perfectly indistinguishable ciphertexts if, for every adversary 𝑨,

Pr
𝑘
𝑨 wins the IND game =

1

2
.

Theorem 1. Definitions 1-4 are all equivalent.

INDISTINGUISHABILITY OF CIPHERTEXTS

Indistinguishability experiment (IND).

1. 𝑨 outputs two messages 𝑚0, 𝑚1 with 𝑚0 = 𝑚1 ;

2. We sample a key 𝑘 ← 𝐊𝐞𝐲𝐆𝐞𝐧, and a coin 𝑏 ← 0,1 ;

then we give 𝑨 the ciphertext 𝑐 ← 𝐄𝐧𝐜𝑘 𝑚𝑏 ;

3. 𝑨 outputs a bit 𝑏′.

We say 𝑨 wins if 𝑏 = 𝑏′.

𝑨

𝑚0

𝑚1

𝐄𝐧𝐜𝑘 𝑨 𝑏′

𝑨

𝑚0

𝑚1
𝐄𝐧𝐜𝑘

𝑨 𝑏′

𝑐

𝑐

Definition. An encryption scheme 𝐊𝐞𝐲𝐆𝐞𝐧, 𝐄𝐧𝐜,𝐃𝐞𝐜 has indistinguishable ciphertexts if, for
every PPT adversary 𝑨,

Pr 𝑨 wins IND ≤
1

2
+ negl 𝑛 .

COMPUTATIONALLY-SECURE ENCRYPTION

Construction.

Let 𝑮: 0,1 𝑛 → 0,1 ℓ 𝑛 be a pseudorandom generator.

Define an encryption scheme (for ℓ(𝑛)-bit messages) as follows:

• clearly, ℓ 𝑛 can be much larger than 𝑛;

• so we can’t hope for perfect secrecy (Shannon’s theorem);

• can we have IND (indistinguishability of ciphertexts)?

0,1 ℓ(𝑛) ⨁ 0,1 ℓ(𝑛)

plaintext ciphertext

𝑮

𝑘Construction: PRG scheme.

Key generation : sample 𝑘 ← 0,1 𝑛;

Encryption : 𝐄𝐧𝐜𝑘 𝑚 = 𝑚⊕𝑮(𝑘);

Decryption : 𝐃𝐞𝐜𝑘 𝑐 = 𝑐 ⊕ 𝑮(𝑘) .

COMPUTATIONAL CRYPTO: CHALLENGES

This intuition seems sound. How can we formalize it?

1. Notions to define:

• “random-looking”

• “good-enough” randomness

• “feasible” vs “infeasible” algorithms

• “secure” encryption (can’t be same as perfect secrecy, we gave up on that.)

2. Stuff to construct:

• a function which produces “good enough” randomness against “feasible” algorithms

3. Theorems we have to prove:

• the construction in the previous slide is secure.

PRG ENCRYPTION: SECURITY PROOF

Claim: PRG encryption has indistinguishable ciphertexts.

• How to prove this?

• What’s our only leverage? The assumption that 𝑮 is a PRG;

• So let’s try proof by contradiction:

“If there’s an attacker 𝑨 that can win the IND game,

then there’s an attacker 𝑫 against 𝑮.”

• called a “reductionist proof” or “proof by reduction.”

• used a lot in crypto: learn it, get used to it!

𝑨

𝑚0

𝑚1

𝐄𝐧𝐜𝑘 𝑨 𝑏′

𝑨

𝑚0

𝑚1
𝐄𝐧𝐜𝑘

𝑨 𝑏′

𝑐

𝑐

distinguisher

PRG ENCRYPTION: SECURITY PROOF: RECALL PRG

Cryptographic pseudorandomness

Definition. A pseudorandom generator is a deterministic, polynomial-time algorithm 𝑮 satisfying the
following:

1. (expansion) 𝑮: 0,1 𝑛 → 0,1 ℓ 𝑛 for some fixed polynomial ℓ satisfying ℓ 𝑛 > 𝑛 for all 𝑛.
2. (pseudorandomness) for every PPT algorithm 𝑫,

Pr 𝑫 𝑮 𝑠 = 1 − Pr 𝑫 𝑟 = 1 ≤ negl 𝑛 .
𝑠 ← 0,1 𝑛 𝑟 ← 0,1 ℓ(𝑛)

𝑟 ← 0,1 ℓ(𝑛)

𝑫𝑟 𝑏𝑮 𝑫

𝑠 ← 0,1 𝑛

𝑠 𝑏

PRG ENCRYPTION: SECURITY PROOF: RECALL IND

Indistinguishability experiment (IND).

1. 𝑨 outputs two messages 𝑚0, 𝑚1 with 𝑚0 = 𝑚1 ;

2. We sample a key 𝑘 ← 𝐊𝐞𝐲𝐆𝐞𝐧, and a coin 𝑏 ← 0,1 ;

then we give 𝑨 the ciphertext 𝑐 ← 𝐄𝐧𝐜𝑘 𝑚𝑏 ;

3. 𝑨 outputs a bit 𝑏′.

We say 𝑨 wins if 𝑏 = 𝑏′.

𝑨

𝑚0

𝑚1

𝐄𝐧𝐜𝑘 𝑨 𝑏′

𝑨

𝑚0

𝑚1
𝐄𝐧𝐜𝑘

𝑨 𝑏′

𝑐

𝑐

Definition. An encryption scheme 𝐊𝐞𝐲𝐆𝐞𝐧, 𝐄𝐧𝐜,𝐃𝐞𝐜 has indistinguishable ciphertexts if, for
every PPT adversary 𝑨,

Pr 𝑨 wins IND ≤
1

2
+ negl 𝑛 .

PRG ENCRYPTION: SECURITY PROOF

“If there’s an attacker 𝑨 that can win the IND game, then there’s a distinguisher 𝑫 against 𝑮.”

Key facts:

1. if 𝑟 is uniformly random, 𝑨 is playing the IND game against the one-time pad.

2. if 𝑟 is 𝑮(𝑠), 𝑨 is playing the IND game against the PRG scheme.

𝑫
𝑟

∈ 0,1 ℓ 𝑛 Generate 𝑏 ← 0,1
Compute 𝑐 = 𝑚𝑏 ⊕𝑟

𝑐

𝑏′

If 𝑏 = 𝑏′, output 1;
Otherwise output 0. 𝑧 ∈ {0,1}.

𝑨𝑚0, 𝑚1

𝑨will LOSE:
OTP perfect!

𝑨will WIN: by
assumption!

PRG ENCRYPTION: SECURITY PROOF

Let’s analyze 𝑫.

Two cases:

(1.) 𝑟 is uniformly random in 0,1 ℓ 𝑛 .

• Then 𝑫 is an exact simulation of this IND game:

• 𝑨 plays against the one-time pad with keylength ℓ 𝑛 ;

• by perfect secrecy of OTP, 𝑨 loses: Pr 𝑏 = 𝑏′ = 1/2;

• it follows that Pr 𝑧 = 1 = 1/2.

(2.) 𝑟 = 𝑮 𝑠 for uniformly random 𝑠 ∈ 0,1 𝑛.

• Then 𝑫 is an exact simulation of this IND game:

• 𝑨 plays against the PRG scheme with PRG 𝑮;

• by assumption, 𝑨 wins noticeably, i.e. Pr 𝑏 = 𝑏′ ≥ 1/2 +1/𝑝(𝑛) for some polynomial 𝑝;

• it follows that Pr 𝑧 = 1 = 1/2 +1/𝑝(𝑛).

Pr 𝑫 𝑮 𝑠 = 1 − Pr 𝑫 𝑟 = 1 =
1

2
+

1

𝑝 𝑛
−
1

2
=

1

𝑝 𝑛
.

